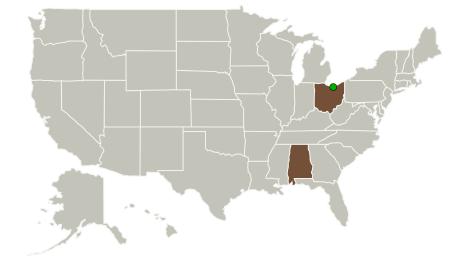
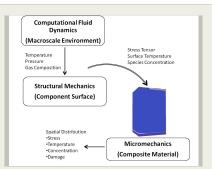
Small Business Innovation Research/Small Business Tech Transfer

Integrated Fluid and Materials Modeling of Environmental Barrier Coatings, Phase I




Completed Technology Project (2017 - 2017)

Project Introduction

Environmental barrier coatings (EBC) prevent oxidation of ceramic materials in reactive, high temperature environments such as the exhaust regions of gas turbine engines. CFDRC proposes to a develop a physics based model of an EBC system interacting with the flow environment to provide a means to gain better understanding of the dynamic processes that effect EBC durability and performance under propulsion conditions. The model will use computational fluids dynamics to establish the conditions and species concentrations across the surface of the structure. Structural models of the part based on the finite element method (FEM) will be used to establish the thermal and mechanical loads acting on the coating material. The response of the coating materials will be modeled at the microscale where each component of the coating system is discretely resolved. The micromechanics model is based on peridynamics, a mesh free theory of continuum mechanics that is well suited to model damage in brittle ceramic materials. Recent developments in peridynamics adapted the method to model diffusive transport coupled with deformation and damage, which will be applied to predict the distribution of reactive species over time through the coating system.

Primary U.S. Work Locations and Key Partners

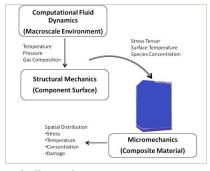
Integrated Fluid and Materials Modeling of Environmental Barrier Coatings, Phase I Briefing Chart Image

Table of Contents

Project Introduction	1	
Primary U.S. Work Locations		
and Key Partners	1	
Images	2	
Organizational Responsibility	2	
Project Management		
Technology Maturity (TRL)	2	
Technology Areas	3	

Small Business Innovation Research/Small Business Tech Transfer

Integrated Fluid and Materials Modeling of Environmental Barrier Coatings, Phase I



Completed Technology Project (2017 - 2017)

Organizations Performing Work	Role	Туре	Location
CFD Research	Lead	Industry	Huntsville,
Corporation	Organization		Alabama
Glenn Research Center(GRC)	Supporting	NASA	Cleveland,
	Organization	Center	Ohio

Primary U.S. Work Locations	
Alabama	Ohio

Images

Briefing Chart Image

Integrated Fluid and Materials Modeling of Environmental Barrier Coatings, Phase I Briefing Chart Image (https://techport.nasa.gov/imag

(https://tecnport.nasa.gov/image/136217)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

CFD Research Corporation

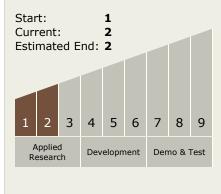
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Bryce Devine

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Integrated Fluid and Materials Modeling of Environmental Barrier Coatings, Phase I

Completed Technology Project (2017 - 2017)

Technology Areas

Primary:

- TX12 Materials, Structures, Mechanical Systems, and Manufacturing
 - └ TX12.1 Materials
 - └ TX12.1.5 Coatings

